
Journal of Theoretical Biology 553 (2022) 111257

A
0

Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

Modeling microtubule dynamic instability: Microtubule growth, shortening
and pause
Frederick Laud Amoah-Darko Jr.1, Diana White ∗,1

Clarkson University, 8 Clarkson Avenue, Potsdam, NY, United States of America

A R T I C L E I N F O

Keywords:
Modeling microtubule dynamics
Paused state
MAPs
Hyperbolic systems
PDEs

A B S T R A C T

Microtubules (MTs) are protein polymers found in all eukaryotic cells. They are crucial for normal cell
development, providing structural support for the cell and aiding in the transportation of proteins and
organelles. In order to perform these functions, MTs go through periods of relatively slow polymerization
(growth) and very fast depolymerization (shortening), where the switch from growth to shortening is called
a catastrophe and the switch from shortening to growth is called a rescue. Although MT dynamic instability
has traditionally been described solely in terms of growth and shortening, MTs have been shown to pause
for extended periods of time, however the reason for pausing is not well understood. Here, we present a new
mathematical model to describe MT dynamics in terms of growth, shortening, and pausing. Typically, MT
dynamics are defined by four key parameters which include the MT growth rate, shortening rate, frequency of
catastrophe, and the frequency of rescue. We derive a mathematical expression for the catastrophe frequency
in the presence of pausing, as well as expressions to describe the total time that MTs spend in a state of growth
and pause. In addition to exploring MT dynamics in a control-like setting, we explore the implicit effect of
stabilizing MT associated proteins (MAPs) and stabilizing and destabilizing chemotherapeutic drugs that target
MTs on MT dynamics through variations in model parameters.
1. Introduction

Microtubules (MTs) are protein polymers found in all eukaryotic
cells. They are crucial for many cellular processes including cell move-
ment, cell differentiation, and cell division (Wade, 2009; Wollman
et al., 2005; Etienne-Manneville, 2013). MTs are composed of 13
protofilaments constituted each by a longitudinal series of polarized
𝛼 and 𝛽-tubulin heterodimers. As a result, MTs are polarized (Wade,
2009), where their ‘‘plus’’ and ‘‘minus’’ ends correspond to the ends
where 𝛽- and 𝛼- tubulin dimers are mainly exposed, respectively,
differing from each other according to chemical composition. These
differences are often readily distinguished by their growing rates. Their
plus ends grow more rapidly when both sides of the MT are exposed
in vitro (Walker et al., 1988). Within animal cells, minus ends are
nucleated by the centrosome (therefor are static) and MTs grow toward
the cell periphery, with their plus ends being oriented toward the cell
membrane, where GTP associated 𝛼−𝛽-tubulin dimers are incorporated
at the growing (active) end of the MTs, such that GTP hydrolysis
occurs after addition. That is, after addition, and because elongation
and GTP hydrolysis are not synchronized, a small GTP region can exist
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at the growing front, referred to as the stabilizing GTP cap (Desai and
Mitchison, 1997). The fine equilibrium that exists between the rate
of GTP hydrolysis and that of the 𝛼 − 𝛽-tubulin addition defines the
stability of the MTs: when GTP-tubulin addition at the front end of
the MT is faster than hydrolysis, the MT will continue to grow; when
hydrolysis catches up with the growing front, the stabilizing GTP cap
is lost and the MT quickly depolymerizes releasing free GDP-tubulin
dimers. These GDP dimers are recycled back to free GTP-tubulin, which
can be added back at the growing ends. The continual process of growth
and shortening is referred to as dynamic instability.

Aside from growth and shortening, some experimental studies sug-
gest that MTs may also undergo periods of pausing, and the reasons for
this are largely unknown (Walker et al., 1988; van Riel et al., 2017;
Trogden and Rogers, 2015; Moriwaki and Goshima, 2016). Conse-
quently few studies have been carried out concerning the importance of
the regulation of this dynamic state. Nevertheless, recent data suggests
a broad role of the pause state for MT behavior and that the regu-
lation of this state by cellular factors such as MT associated proteins
(MAPs) may play essential roles in cellular physiology (Aureliana Sousa
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et al., 2007). Many computational and theoretical models have been
developed to describe MT growth and shortening at the plus ends of
MTs (Chen and Hill, 1985; Dogterom and Leibler, 1993; Flyvbjerg et al.,
1994, 1996; Hinow et al., 2009; Martin et al., 1993; Mishra et al., 2005;
Barlukova et al., 2018; White et al., 2017; Honore et al., 2019). To our
knowledge, the only computational model which has been developed
to explore MTs dynamics in terms of growth, shortening and pausing
was proposed by Ebbinghaus and Santen (2011), where pausing occurs
at the cell periphery where MAPs are linked to the ‘‘plus end’’ of MTs
which are consequently stabilized before shortening. In addition, new
work has shown, through high resolution microscopy and agent-based
models, that the classical two-state model of growth and shortening
does not adequately describe the more robust dynamics of MTs, and in
particular the existence of a paused state (Mahserejian et al., 2022).

We propose a new mathematical model to take into consideration
all the steps of the MT dynamic cycle (nucleation, growth, shortening
and pause), where we assume MTs are non interacting for simplicity.
This simplifying assumption is close to that defined in vitro, where MTs
grow perpendicular from a barrier/plate in systems initially comprised
of only 𝛼 − 𝛽 tubulin dimers (Dogterom and Leibler, 1993; Janson
et al., 2003), or that of the classical centrosomal/astral configuration,
exhibited in many cells. We model the time dependent distributions of
growing, shortening, and pausing MTs using a system of three partial
differential equations (PDEs). We couple this to a system of ordinary
differential equations (ODEs) which describes the time evolution of free
GTP- and GDP-tubulin concentrations. Similar to the work of Hinow
et al. (2009), growth and shortening are described using advection-
type processes. That is, we assume that MTs grow at a rate dependent
on the free GTP-tubulin concentration, and that shortening occurs
at a constant rate (independent of tubulin concentration), which is
consistent with experimental studies under a given concentration of
free tubulin Walker et al. (1988). Similar to White et al. (2017),
an expression is derived, using the method of characteristics, to de-
fine time-based catastrophe frequency in the presence of pausing. In
growth and shortening experiments (without pause), such catastro-
phe frequency is defined as the average number of shortening events
(catastrophes) over the total time MTs spend in a period of growth.
A similar definition which includes pausing has not been formalized in
experiments. However, we suggest a similar definition to that proposed
in Mahserejian et al. (2022); we suggest catastrophe frequency is the
number of shortening events over the period of time MTs are in growth
and pausing states.

The overview of the paper is as follows: in Section 2, we describe the
model assumptions and develop a model for MT dynamics that accounts
for MTs in growing, shortening, and pausing states, as well as free-
tubulin populations. We derive a new expression for the MT catastrophe
frequency in the presence of a paused state, as well as expressions for
the total percentage of time that MTs spend in growing and paused
states. In Section 3, we describe basecase simulation results for MT
dynamics, using MT dynamic parameters taken from literature, and
observe oscillating populations of tubulin in both free and polymerized
form. In addition to exploring MT dynamics in a control-like setting
(which we refer to as the basecase), we describe how variations in
model parameters, such as the MT growth rate parameter, the number
of transitions to a paused state, the MT shortening rate, and the MT
hydrolysis rate, alter the MT dynamics in terms of the catastrophe
frequency and the total time spent in a paused state. We describe how
these results might be connected with the action of certain stabiliz-
ing/destabilizing MT associated proteins (MAPs), as well as certain
classes of chemotherapeutic MT targeting drugs. Finally, in Section 4,
we discuss the main results of our model simulations. One key result
we show is that, by adding a small amount of pausing to the system,
MT dynamics increases, as described by an increase in catastrophe
2

frequency and stimulated oscillations.
2. Modeling framework

Here, we outline our model to describe MT dynamics in systems
comprised solely of tubulin (free and polymerized forms). First, in
Section 2.1, we outline the model assumptions, and then in Section 2.2,
we provide details for the construction of the model based on the
assumptions stated in Section 2.1.

2.1. Model assumptions

We first state model assumptions (A1) through (A7), and provide
mathematical and biological reasoning for each:

(A1) MTs cannot grow below a critical GTP-tubulin concentration,
above which the MT growth rate increases linearly with increasing
GTP-tubulin concentration (this type of dynamics is observed experi-
mentally (Walker et al., 1988)). Here 𝑝(𝑡) represents the GTP-tubulin
concentration at time 𝑡, and the MT growth rate 𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)) is given by

𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)) =

{

0 when 𝑝 ≤ 𝑝𝑐
𝛼(𝑝(𝑡) − 𝑝𝑐 ) when 𝑝 > 𝑝𝑐 ,

(1)

where 𝛼 is the growth rate parameter and 𝑝𝑐 is the critical tubulin
concentration below which MTs cannot grow. A description of all model
parameters, as well as ranges for their values, is found in Table 1.

(A2) MT hydrolysis is a complicated process, and there are a number
of theories describing how the process might work. Coupled hydrolysis
refers to the process by which hydrolysis is stimulated as soon as a
GTP-tubulin dimer is added to a growing MT, while vectorial hydrolysis
refers to the process by which hydrolysis is stimulated at the boundary
between the GDP and GTP zone along a growing MT. Random hy-
drolysis (combined with coupled or vectorial hydrolysis) has also been
considered (Bowne-Anderson et al., 2013; Walker et al., 1988). Since
we make simplifying assumptions (described in the numerics section)
to treat MTs as 1-D structures, we assume that the MT hydrolysis
rate 𝛾ℎ is kept constant and hydrolysis is a vectorial process which
can be described mathematically using an advection (directed) term.
Experimental ranges for 𝛾ℎ are found in Table 1.

(A3) When the MT hydrolysis rate is smaller than the (time varying)
MT growth rate, a MT continues to grow. When the hydrolysis rate is
larger than the MT growth rate, a MT can undergo a catastrophe event,
leading to MT shortening. The difference between the growth rate and
the hydrolysis rate is denoted by 𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)) − 𝛾ℎ = 𝑅(𝑡), for simplicity in
notation, and describes the rate of change of the MT cap region.

(A4) MTs shorten at a constant rate 𝛿. In experiments the shorten-
ing rate of MTs are found to be independent to changes in tubulin
concentration (Walker et al., 1988; Fees and Moore, 2019).

(A5) MTs transition into the pausing state from the growing state with
transition frequency 𝐶, which is defined as the average number of tran-
sitions MTs make to a paused state from a growth state over a specified
period of time ( typically the time frame of the simulation). Fewer
transitions correspond to lower 𝐶, and many transitions corresponds to
higher 𝐶. We define the number of pause transitions 𝑁𝑡𝑟 as

𝑁𝑡𝑟 = 𝐶 × 𝑇𝑠𝑖𝑚,

where 𝑇𝑠𝑖𝑚 denotes the total simulation time. The parameter 𝑁𝑡𝑟 is
adjusted based on the frequency 𝐶 whose range is based on similar
values found in Brittle and Ohkura (2005), as shown in Table 1.

(A6) We assume that MTs do not interact with each other and are only
dynamic at their plus end. This simplifying assumption is representa-
tive of a system where MTs grow (mostly) perpendicular out from a
barrier containing seeds for nucleation in vitro, similar to experiments

completed by Janson et al. (2003), or systems where MTs grow out
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Table 1
Table of model parameters, their ranges, and sources.
Parameter Value

Critical tubulin concentration 𝑝𝑐 0–5 μM (Mirigian et al.; Walker et al., 1988)
Rescue propensity 𝜆 3–10 min−1 (Honoré and Braguer, 2011)
Growth parameter 𝛼 0.5–15 μM−1 min−1 (Walker et al., 1988; Hinow et al., 2009; Barlukova et al., 2018)
Hydrolysis rate 𝛾ℎ 3–10 μm min−1 (Barlukova et al., 2018; Hinow et al., 2009)
Shortening rate 𝛿 3–36 μm min−1 (Pagano et al., 2012; Walker et al., 1988; Fees and Moore, 2019)
Nucleation rate 𝜇 5.9 × 10−3 μM−1 min−1 (Hinow et al., 2009)
GDP to GTP exchange rate 𝜅 0.5–10 min−1 (Hinow et al., 2009)
Transition frequency 𝐶 0–1 min−1 [This paper]
Number of transitions 𝑁𝑡𝑟 0–7.5 transitions [This paper]
Dimer nucleation number 𝑛 2–5 (Sept et al., 1999; Hinow et al., 2009)
Fig. 1. Schematic representation of the MT dynamic cycle. MTs grow (along 𝑥-axis), and when the lose their cap (𝑧 = 0) they can undergo a catastrophe and shorten, releasing
free-GDP tubulin back into the system. Free GDP-tubulin is recycled back into free-GTP tubulin and incorporated back into growing MTs via rescue. MTs can pause at any location
in the domain, and completely depolymerize after losing their GTP cap in the paused state, entering into the free-GDP compartment.
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radially from a centrosomal configuration (often called an astral array)
in vivo (Dogterom and Leibler, 1993).

(A7) MTs can be rescued with frequency 𝜆 after depolymerization.
Here, rescues are assumed to be independent of tubulin concentra-
tion (Fees and Moore, 2019), and are assumed to be end-driven (oc-
curring closer to the MT nucleation site) and stochastic in nature. In a
study by Fees and Moore (2019), the authors suggest that such rescue
events, which are not well understood, are likely due to ‘‘lattice effects’’
or ‘‘GTP islands’’ that exist within the lattice, helping to promote rescue.
The occurrence of such GTP islands, and mechanisms behind their
existence have been studied by de Forges et al. (2016), and have been
modeled by Honore et al. (2019).

A schematic of the full model is given in Fig. 1. Here, the domain
is described by the space spanned by the axes 𝑥 = 0 and 𝑥 = 𝑧 (a
triangle). MTs are nucleated only when 𝑥 is small (only a few dimers
are needed for this process), and grow in length along direction 𝑥. Their
GTP cap can grow or shrink along direction 𝑧, and when the cap size
s zero, MTs enter the shortening compartment (if the hydrolysis rate
xceeds the growth rate), where they undergo a complete catastrophe
nd enter the free GDP-tubulin compartment, which is recycled back
nto free-GTP tubulin and added back to the growing MT population.
n additional pause compartment is added to account for MTs that

ransition from growth to pause. Once in a paused state, hydrolysis
lways takes over the growth rate (as growth rate is zero), and MTs
ndergo a complete catastrophe when the GTP cap is lost, where
olymerized tubulin becomes free GDP tubulin and the process repeats
tself.

.2. PDE model for polymerized tubulin populations

Here we describe the model formulation, where we use a PDE
3

odel, given by Eqs. (2), (3), and (4), to describe the time evolution of 𝐶
growing MTs 𝑢(𝑥, 𝑧, 𝑡) of length 𝑥, cap size 𝑧, at time 𝑡, shortening MTs
𝑣(𝑥, 𝑡) of length 𝑥 at time 𝑡, and pausing MTs 𝑄(𝑥, 𝑧, 𝑡) of length 𝑥, cap
ize 𝑧, at time 𝑡.

The dynamics of growing MTs 𝑢 are described by Eq. (2), where
T growth is described as an advection process such that MTs grow

n the 𝑥 direction at a rate 𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)), proportional to the GTP-tubulin
concentration 𝑝 (recall the description of MT growth described in (A1)).
The MT cap size changes according to an advective process along the 𝑧
direction, where the advection speed 𝑅(𝑡) is the difference between the
growth rate 𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)) and the constant hydrolysis rate 𝛾ℎ (i.e., 𝑅(𝑡) =
𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)) − 𝛾ℎ).
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑡
+ 𝛾𝑝𝑜𝑙𝑦(𝑝) 𝜕𝑢

𝜕𝑥
+ (𝛾𝑝𝑜𝑙𝑦(𝑝) − 𝛾ℎ) 𝜕𝑢

𝜕𝑧
= −𝐶𝑢 (2)

𝜕𝑣(𝑥, 𝑡)
𝜕𝑡

− 𝛿 𝜕𝑣
𝜕𝑥

= −

{

𝜆𝑣 if 𝑅(𝑡) ≥ 0
𝑅(𝑡)𝑢(𝑥, 0, 𝑡) if 𝑅(𝑡) < 0

(3)

𝜕𝑄(𝑥, 𝑧, 𝑡)
𝜕𝑡

− 𝛾ℎ 𝜕𝑄
𝜕𝑧

= 𝐶𝑢, (4)

The MT cap grows in direction 𝑧 when 𝑅(𝑡) ≥ 0 and shortens when
(𝑡) < 0. Finally, the term on the right side of Eq. (2) describes MTs

hat enter a paused state with transition frequency 𝐶. In other words,
𝐶𝑢 is the rate of change of MTs out of the growing state 𝑢 and into

he paused state 𝑄.
The dynamics of shortening MTs 𝑣 are described by Eq. (3), where

Ts shorten at a constant rate 𝛿 along the 𝑥 direction, and can be
escued at a rescue frequency 𝜆 (entering back to the growing state
ia a boundary condition described in Section 2.2.1). Further, growing
Ts that undergo a catastrophe (have cap size 𝑧 = 0 when 𝑅(𝑡) < 0)

enter the shortening state.
Finally, the dynamics of pausing MTs 𝑄 are described by Eq. (4),

here MTs enter the paused state from the growing state at rate
𝑢. In the paused state, the MT length remains fixed at the length
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𝑥 at which it entered this state, and the MT cap size 𝑧 shortens at
the constant hydrolysis rate 𝛾ℎ. Since paused MTs can only undergo
hydrolysis (they do not grow), we assume that MTs remain in the
pausing state until they lose their stabilizing GTP cap. Once that
happens a complete catastrophe occurs (MT shorten instantaneously)
and the MT completely depolymerizes to free GDP-tubulin, entering the
free GDP-tubulin state 𝑞 as described by Eq. (11) in what follows.

2.2.1. Boundary conditions for PDE system
We define the boundary conditions for the PDEs given by Eqs. (2),

(3), and (4) by considering the state space 𝛴 =
{

(𝑥, 𝑧) ∈ R2 ∶ 𝑥 ≥ 𝑧 ≥ 0
}

with boundaries 𝛤1 = {(𝑥, 𝑧) ∈ 𝛴 ∶ 𝑧 = 0} and 𝛤2 = {(𝑥, 𝑧) ∈ 𝛴 ∶ 𝑥 = 𝑧}.
The schematic of the domain, including these boundaries, is described
in Fig. 1.

On the boundary 𝛤2, we define a nucleation boundary condition
for growing MTs 𝑢. In particular, we define the condition

𝛾ℎ𝑢(𝑥, 𝑥, 𝑡) =
𝜇𝑝𝑛𝜉(𝑥)

𝐿∗ , (5)

where the rate of nucleation is given by 𝜇 > 0 (Hinow et al., 2009), 𝑛
refers to the number of tubulin heterodimers needed for nucleation (we
set 𝑛=2, as this is the smallest number of tubulin dimers required for
nucleation), and the function 𝜉(𝑥) is the length distribution of freshly
nucleated MTs, approximated by a heavy side function that is non-zero
for small MT length 𝑥 such that

𝜉(𝑥) = 1 −𝐻(𝑥, 𝑥𝑚𝑎𝑥). (6)

We define nucleation in this way since newly formed MTs consist of
a very small number of tubulin dimers (Sept et al., 1999). Parameter
𝑥𝑚𝑎𝑥 describes the largest length of a freshly nucleated MT, where we
set 𝑥𝑚𝑎𝑥 = 0.5 μm (which corresponds to 1 grid cell in our simulation
omain, as described later in the numerical details section). Finally, the
verage length of nucleated MTs is given by

∗ = ∫

∞

0
𝜉(𝑥)𝑥𝑑𝑥. (7)

Along the boundary 𝛤2 we prescribe a no-flux condition for pausing
Ts 𝑄 such that MTs cannot grow past the boundary 𝑥 (i.e., tubulin

s not lost, but is conserved in our system).

𝜕𝑄(𝑥, 𝑧, 𝑡)
𝜕𝑧

|

|

|

|

|𝑧=𝑥
= 0 (8)

Finally, we consider the boundary 𝛤1 when 𝑅(𝑡) ≥ 0. Along this
boundary we describe a rescue boundary condition for 𝑢, such that
MTs that do not have GTP cap are rescued according to the boundary
condition

𝑅(𝑡)𝑢(𝑥, 0, 𝑡) = 𝜆𝑣(𝑥, 𝑡) for 𝑅(𝑡) ≥ 0. (9)

Parameter 𝜆 refers to the rescue frequency at which shortening MTs
re-enter the growing state (Hinow et al., 2009; White et al., 2017).

2.3. ODE model for free-tubulin populations

The temporal dynamics of the free-GTP tubulin 𝑝(𝑡) and free-GDP
tubulin 𝑞(𝑡) concentrations are described by Eqs. (10) and (11), respec-
tively. These equations are formulated from a conservation law, such
that the total tubulin in the system (free and polymerized) remains
constant. In other words, the PDEs given by Eqs. (2) through (4) are
transformed to ODEs (describing concentrations of tubulin in polymer
form over time), by multiplying each equation by 𝑥 (representative
of polymer length) and integrating over the state space. The new
terms that come out of this integration are included into the ODE
system given by Eqs. (10) and (11) in such a way as to conserve the
total tubulin concentration. A full derivation of the 5-dimensional ODE
system is given in the Appendix and is analogous to work completed
by (Hinow et al., 2009).
𝑑𝑝

= −𝛾𝑝𝑜𝑙𝑦(𝑝)
∞ 𝑥

𝑢(𝑥, 𝑧, 𝑡)𝑑𝑧𝑑𝑥 − 𝜇𝑝𝑛 + 𝜅𝑞 (10)
4

𝑑𝑡 ∫0 ∫0
𝑑𝑞
𝑑𝑡

= 𝛿 ∫

∞

0
𝑣(𝑥, 𝑡)𝑑𝑥 − 𝜅𝑞 + 𝛾ℎ ∫

∞

0
𝑄(𝑥, 0, 𝑡)𝑥𝑑𝑥 (11)

The first term on the right-hand side of Eq. (10) describes the uptake
f free-GTP tubulin 𝑝 as a MT grows, while the second term describes
ree-GTP tubulin used in the nucleation process. The final term is
dded to describe the exchange of free-GDP tubulin to free-GTP tubulin,
here 𝜅 describes the rate of biochemical pumping as GDP tubulin is

onverted to GTP tubulin. Finally, the first term in Eq. (11) describes
ll free-GDP tubulin 𝑞 that comes from a shortening event while the
econd term describes the GDP/GTP exchange. The last term in Eq. (11)
escribes the free-GDP tubulin that comes from the pause state 𝑄 (those
aused MTs that have lost their GTP cap such that 𝑧 = 0). All model
arameters, their values, and sources are summarized in Table 1.

.4. Calculating catastrophe frequency 𝑓𝑐 when paused state incorporated

In previous works, the key dynamic parameters that help to describe
T dynamics include (1) the catastrophe frequency, (2) the rescue

requency, (3) the MT growth rate, and (4) the MT shortening rate. In
ur model, the MT shortening rate 𝛿 and rescue frequency 𝜆 are model
nputs and specified at the beginning of a simulation. In addition, the
T growth rate 𝛾𝑝𝑜𝑙𝑦(𝑝) is dependent on the free-GTP tubulin population

, as described by Section 2.1. Here, we expand on the work of White
t al. (2017) to include a pausing state, for which we include new
ynamic parameters, specifically we include (1) the transition to pause
requency 𝐶, and a new expression for the catastrophe frequency 𝑓𝑐
hat incorporates both catastrophe from growth and paused states.

In White et al. (2017), the authors derive a mathematical definition
or catastrophe frequency, which is based on an experimental definition
or catastrophe frequency in the absence of pause as outlined by

alker et al. and others (Walker et al., 1988). In particular, time-based
atastrophe for a single MT is described as:

𝑐 =
the number of catastrophe events

total time for which a MT spends in the growing state
For this experimental description, the mean catastrophe frequency is
calculated by averaging over the catastrophe frequencies for many MTs
within a single experiment.

Fig. 2(a) illustrates a schematic of a single MT growing and
shortening over time, and Fig. 2(b) illustrates a single MT growing,
pausing, and shortening over time. Here, we highlight a MT under-
going 3 catastrophe events over a given time period, where the 𝑡𝑖’s
correspond to growing times and the 𝑡𝑖’s correspond to the pausing
times. From Fig. 2(a), and using the experimental definition for catas-
trophe frequency in the absence of pause we arrive at the catastrophe
frequency

𝑓𝑐 =
3

𝑡1 + 𝑡2 + 𝑡3
Currently, there is no common consensus for a similar definition

f catastrophe frequency in the presence of pause. However, using the
bove definition as motivation for a new description, and similar to the
ork of Mahserejian et al. (2022), we suggest that such a definition
ould take on the form

𝑐̃ =
3

𝑡1 + 𝑡2 + 𝑡3 + 𝑡1 + 𝑡2 + 𝑡3
.

To determine the growing times and pausing times from our model,
e make use of the method of characteristics as applied to the pair of
yperbolic PDEs (2) and (3) for growing and pausing MTs, respectively.
or ease in reading we write them again here:
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑡
+ 𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡))

𝜕𝑢(𝑥, 𝑧, 𝑡)
𝜕𝑥

+ (𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)) − 𝛾ℎ)
𝜕𝑢(𝑥, 𝑧, 𝑡)

𝜕𝑧
= −𝐶𝑢

𝜕𝑄(𝑥, 𝑧, 𝑡)
𝜕𝑡

− 𝛾ℎ 𝜕𝑄
𝜕𝑧

= 𝐶𝑢,
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Fig. 2. Schematic of MT growth over time. MT length is depicted along the 𝑦-axis, while time is along the 𝑥-axis. (a) MT length over time with no pause; (b) MT length over time
with pause. The blue lines illustrate time periods for which a MT spends growing (indicated by times 𝑡𝑖), the green lines refer to time periods for which a MT pauses (indicated
by times 𝑡𝑖), and the red dots correspond to catastrophe events.
From the above equation of growth 𝑢, the characteristic equation for
MT-cap size 𝑧 is
𝑑𝑧
𝑑𝑡

= 𝑅(𝑡), (12)

Where we recall that 𝑅(𝑡) = 𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡)) − 𝛾ℎ. Solving this equation for
𝑧(𝑡) gives

𝑧(𝑡) = 𝑧(𝑡0) + ∫

𝑡

𝑡0
𝑅(𝑠)𝑑𝑠. (13)

where 𝑧(𝑡0) is the ‘‘initial’’ value for 𝑧, and we consider this to be the
time at which a rescue takes place such that 𝑅(𝑡) ≥ 0 and 𝑧(𝑡0) = 0. Now,
since we know a catastrophe would occur at a later time 𝑡 where 𝑅(𝑡) < 0
and 𝑧(𝑡) = 0, starting at the rescue time 𝑡0 we trace forward along the
characteristic curve 𝑧(𝑡) to the catastrophe time 𝑡. Substituting 𝑧(𝑡0) and
𝑧(𝑡) into (13) we arrive at

𝑧(𝑡) − 𝑧(𝑡0) = ∫

𝑡

𝑡0
𝑅(𝑠)𝑑𝑠 (14)

and since 𝑧(𝑡0) = 𝑧(𝑡) = 0, we have

∫

𝑡

𝑡0
𝑅(𝑠)𝑑𝑠 = 0. (15)

Numerically solving this integral gives us the mean growing time

𝑇𝑔𝑟𝑜𝑤(𝑡) = 𝑡 − 𝑡0, (16)

where catastrophe events happen at time 𝑡. To determine the total grow
time of MTs over the entire time course of the simulation (𝑇𝑠𝑖𝑚) we
write

𝑇̄𝑔𝑟𝑜𝑤 = ∫

𝑇𝑠𝑖𝑚

0
𝑇𝑔𝑟𝑜𝑤(𝑡)𝑑𝑡. (17)

Next, we determine the pausing time, which we will denote as 𝑇𝑝𝑎𝑢𝑠𝑒.
From the pausing equation for 𝑄 the characteristic equation for cap size
𝑧 is
𝑑𝑧
𝑑𝑡

= −𝛾ℎ. (18)

Solving this equation using an initial condition 𝑧(0) = 𝑧(𝑡∗), where 𝑡∗ is
the time a MT enters the pause state we arrive at

𝑧(𝑡) = 𝑧(𝑡∗) +
𝑡
−𝛾ℎ𝑑𝑠, (19)
5

∫𝑡∗
where 𝑧(𝑡) − 𝑧(𝑡∗) is the length of the MT GTP cap at some time 𝑡 after
entering the pause state at time 𝑡∗. Since MTs only exit the pause state
when the cap size 𝑧 = 0, we define 𝑧(𝑡𝑒𝑥𝑖𝑡) = 0 at exit time 𝑡𝑒𝑥𝑖𝑡 and write

𝑧(𝑡∗) = ∫

𝑡𝑒𝑥𝑖𝑡

𝑡∗
𝛾ℎ𝑑𝑠, (20)

where we define the MT pause time as

𝑇𝑝𝑎𝑢𝑠𝑒(𝑡∗) = 𝑡𝑒𝑥𝑖𝑡 − 𝑡∗.

Since

𝑧(𝑡∗) = (𝑡𝑒𝑥𝑖𝑡 − 𝑡∗)𝛾ℎ,

as 𝛾ℎ is constant, we arrive at the expression

𝑇𝑝𝑎𝑢𝑠𝑒(𝑡∗) = 𝑧(𝑡∗)∕𝛾ℎ. (21)

To determine the total pause time over the entire time course of the
simulation (𝑇𝑠𝑖𝑚) we write

𝑇̄𝑝𝑎𝑢𝑠𝑒 = ∫

𝑇𝑠𝑖𝑚

0
𝑇𝑝𝑎𝑢𝑠𝑒(𝑡∗)𝑑𝑡∗. (22)

Finally, we derive a new definition of catastrophe frequency for
those MTs that undergo catastrophe directly from a growing state when
their cap size is zero and 𝑅(𝑡) < 0, and those that undergo catastrophe
from a paused state after losing their stabilizing GTP cap. As described
above, we define the catastrophe frequency with pause as the sum of
the catastrophes that occur after growing and those that occur after
pausing, divided by the total time a MT spends in either the growing
or pausing state. If we define 𝐴 as the total number of catastrophes
from a growing state and 𝐵 as the total number of catastrophes from a
paused state, the time-based catastrophe frequency with pause is given
by,

𝑓𝑐 =
∫ 𝑇𝑚𝑎𝑥
0

1
𝑇𝑔𝑟𝑜𝑤(𝑡)+𝑇𝑝𝑎𝑢𝑠𝑒(𝑡)

(𝐴 + 𝐵)𝑑𝑡

∫ 𝑇𝑚𝑎𝑥
0 (𝐴 + 𝐵)𝑑𝑡

(23)

where

𝐴 = ∫

∞

0
𝑢(𝑥, 0, 𝑡)𝑑𝑥, when 𝑅(𝑡) < 0, (24)

𝐵 =
∞
𝑄(𝑥, 0, 𝑡)𝑑𝑥, (25)
∫0
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such that 𝑢(𝑥, 0, 𝑡) is the number density of MTs that undergo a catas-
trophe from the growing state with cap size 𝑧 = 0 and 𝑄(𝑥, 0, 𝑡) is the
number density of MTs that undergo a catastrophe from the paused
state with cap size 𝑧 = 0.

3. Results

3.1. Numerical details and initial/baseline simulations

We simulate our model using a finite volume method. For the
advection terms in Eqs. (2) to (4) we use an upwinding approach,
while for the ODEs (12) and (11) we use an explicit Euler strategy.
All simulations are implemented in Matlab using custom code similar
to that outlined in Barlukova et al. (2018). We discretize our domain
into 1000 × 1000 cells, where each cell has a dimension of 200 nm ×
200 nm. Because the MT growth rate changes in time we use an adaptive
time step (with a maximum time step of 0.1) to ensure that our scheme
satisfies the CFL condition (Zauderer, 2006). The quantities for free
GTP and GDP-tubulin (𝑝 and 𝑞) are measured in μM (1 micromole per
liter), and the length of a MT and its’ GTP cap region are measured
in μm. Similar to Hinow et al. (2009), we define a conversion factor
to represent μM in terms of μm, so that all units are consistent. In
particular, in 1 μmol of tubulin, there are 𝑁𝐴 × 10−6 molecules of
tubulin, where 𝑁𝐴 = 6.022×1023 is Avogadro’s number. For simplicity,
we assume a MT is one-dimensional, where in reality most MTs are
composed of 13 protofilaments. Thus, we estimate the length of one
dimer in our model, 𝑙𝑢𝑛𝑖𝑡, to be the true length of a dimer divided by
13. That is,

𝑙𝑢𝑛𝑖𝑡 =
8.12 × 10−3

13
μm.

hus, the factor of conversion from μM to μm is

𝑜𝑛𝑣 = 6.022 × 1017 × 𝑙𝑢𝑛𝑖𝑡.

For the complete system of equations given by Eqs. (2), (3), (4), (10),
nd (11), we simulate our model using the following initial conditions:

(𝑥, 𝑧, 0) = 0

(𝑥, 0) = 0

(𝑥, 𝑧, 0) = 0

(0) = 15 μM

(0) = 0.

That is, we assume our system is initially comprised of only free
TP-tubulin, such that MT dynamics are initiated through the process
f nucleation. Since the polymer populations include descriptions for
ength, we convert each to tubulin concentrations by multiplying each
olymer equation through by the tubulin length 𝑥 and integrate over
he state space to give:

𝑢(𝑡) = ∫

∞

0 ∫

𝑥

0
𝑢(𝑥, 𝑧, 𝑡)𝑥𝑑𝑧𝑑𝑥 = Total tubulin in growing MTs,

𝑣(𝑡) = ∫

∞

0
𝑣(𝑥, 𝑡)𝑥𝑑𝑥 = Total tubulin in shortening MTs,

nd

𝑄(𝑡) = ∫

∞

0 ∫

𝑥

0
𝑄(𝑥, 𝑧, 𝑡)𝑥𝑑𝑧𝑑𝑥 = Total tubulin in pausing MTs.

y converting the polymerized system described by PDEs to an ODE
ystem describing tubulin concentrations over time, we can illustrate
he full system in terms of tubulin concentrations for both polymer
opulations and free-tubulin populations. The calculation to convert
6

Table 2
Table of time dependent state variables.

Variable Meaning

𝑢(𝑡) Concentration of tubulin in growing MTs at time 𝑡 (μM)
𝑣(𝑡) Concentration of tubulin in shrinking MTs at time 𝑡 (μM)
𝑄(𝑡) Concentration of tubulin in pausing MTs time 𝑡 (μM)
𝑝(𝑡) Free GTP-tubulin concentration at time 𝑡 (μM)
𝑞(𝑡) Free GDP-tubulin concentration at time 𝑡 (μM)

Table 3
Basecase model parameters for simulations shown in Fig. 3.

Parameter SI units Baseline value

𝑝𝑐 μM 2
𝜆 min−1 0.136
𝛼 μm min−1 μM−1 2.5
𝛾ℎ μm min−1 6
𝛿 μm min−1 20
𝜇 M−1 min−1 5.9 × 103

𝜅 min−1 1
𝐶 min−1 0 or 0.1
𝑁𝑡𝑟 Dimensionless 0 or 1.5
Dimer nucleation number 𝑛 Dimensionless 2

to the ODE system is given in Appendix, and uses a key assumption
that the total tubulin in the system in conserved. Table 2 summarizes
all model variables for each tubulin population. These time dependent
variables will be those illustrated in the plots that follow.

To understand how tubulin concentrations in each of polymerized
and free form evolve with time, we illustrate their temporal dynamics
in Fig. 3 using the parameter values summarized in Table 3 (which are
from the experimental ranges given in Table 1).

Fig. 3 illustrates that tubulin concentrations oscillate over time,
highlighting the classical switch between growing (red curve) and
shrinking (blue) states. In Fig. 3(left), we illustrate a system with no
pause (transition to pause state number 𝑁𝑡𝑟 = 0), and in Fig. 3(right)
we add a small transition to the pause state from the growing state
(𝑁𝑡𝑟 = 1.5). In both cases, the system dynamics are similar in that
each are initially comprised of 15 μM of free-GTP tubulin (green
curve), which immediately drops off as it is used to promote nucle-
ation and then MT growth. The tubulin concentration in the growth
state starts early on (described by the red curve), peaking at about
3 min and then settling into an oscillatory state. Following the initial
period of growth, tubulin enters the shortening state (described by the
dark blue curve) as depolymerization occurs due to GTP hydrolysis
and subsequent catastrophe. Directly after entering the shortening
state the tubulin enters the free-GDP tubulin state (described by the
cyan curve) and GDP is quickly converted back to free GTP-tubulin
(described by the green curve). Due to the positive (non-zero) rates
of nucleation (μ), pumping (𝜅), and rescue frequency (𝜆), we do not
see complete depletion of tubulin from the polymerized states, and
in fact we see sustained oscillations, which is characteristic of many
MT systems. If, for example, the rescue frequency was set to zero,
the system would eventually break down into just free-GTP and free-
GDP tubulin (result not shown here, but a similar result is described
in Hinow et al. (2009)). Also, we observe that the addition of pause,
added by setting the pausing transition to 𝑁𝑡𝑟 = 1.5 from 𝑁𝑡𝑟 = 0
(Fig. 3(right)), stimulates MT dynamics in the sense that the tubulin
populations oscillate with greater frequency (paused state shown by
black curve) and the catastrophe frequency increases from close to
zero to 𝑓𝑐 = 1.6354 min−1. This gives an indication that small pause
transition numbers 𝑁𝑡𝑟 might play an important role in MT dynamics
in the sense that MT dynamics are stimulated (as shown by increased
oscillations in the tubulin concentration curves and the increase in
the catastrophe frequency). We should note that different basecase
parameter sets tested give different catastrophe frequencies, but the

same qualitative features hold when increasing 𝑁𝑡𝑟 from zero across
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Fig. 3. Time evolution of tubulin concentration in growing 𝑢̄, shrinking 𝑣̄, pausing 𝑄̄, and free tubulin 4 states 𝑝 and 𝑞 (units in μM) for the baseline parameters described in
Table 3. Left: 𝑁𝑡𝑟 = 0 (no pause) and catastrophe frequency 𝑓𝑐 is near 0 (3.434 × 10−7 min−1). Right: pausing transition is 𝑁𝑡𝑟 = 1.5 and catastrophe frequency 𝑓𝑐 = 1.6354 min−1.
Here we note that MTs oscillate between different populations in each case, where the frequency of oscillations increases slightly when pausing is incorporated to the system.
all these parameter sets. That is, increasing the number of pausing
transitions from 𝑁𝑡𝑟 = 0 to 𝑁𝑡𝑟 = 1.5 always results in a significant
increase in catastrophe frequency and an increase in the frequency of
oscillations in the tubulin concentration curves (results not shown).

3.2. Implicit effect of MAPs and MT chemotherapeutic drugs on MT dy-
namics

We examine how the incorporation of a pausing state into our model
changes the model dynamics (where initially we set the number of
transitions to the paused state 𝑁𝑡𝑟 = 0). In addition to varying the
pausing frequency, we also look at how variations in the growth rate
parameter 𝛼, the shortening rate 𝛿, and the hydrolysis rate 𝛾ℎ, alter
MT dynamics in terms of (A) the catastrophe frequency 𝑓𝑐 derived in
Eq. (23), and (B) the percentage of time that the MTs spend in each
of the growing and pausing states (determined by knowing the grow
time 𝑇̄𝑔𝑟𝑜𝑤 in Eq. (17), the pause time 𝑇̄𝑝𝑎𝑢𝑠𝑒 in Eq. (22), and the total
simulation time 𝑇𝑠𝑖𝑚). Our hope is that such variations will provide
details into the implicit action of certain MT associated proteins (MAPs)
and chemo drugs that work to alter the dynamics on MTs in vitro and in
vivo (Stanton et al., 2011; Zhou and Giannakakou, 2005; Hamel et al.,
1981; Kumar, 1981; Mishra et al., 2005; Zhou and Giannakakou, 2005;
Berges et al., 2014). This will be described in further detail in the next
two subsections.

3.2.1. Exploring MT stabilization: varying the transition to pause number
𝑁𝑡𝑟 and growth rate parameter 𝛼

Groups of MAPs that act as MT stabilizers (examples include +TIPs,
MT plus-end tracking proteins) are known to specifically bind to grow-
ing MT plus ends to promote polymerization and stabilization (Stanton
et al., 2011). MT stabilizing drugs include drugs that bind to the
taxane site, including paclitaxel (taxol), docetaxel (taxotere), and taxol
analogs (Stanton et al., 2011; Zhou and Giannakakou, 2005). These
drugs are commonly used as cytotoxic agents targeting a variety of
tumors. Their cytotoxic effect has been attributed to their ability to
bind to tubulin and stabilize protofilaments, which leads to MT over-
polymerization, and ultimately cell death. Not only do the addition
of such drugs decrease catastrophe frequency and increase pause time
(like +TIPs described above), but their addition often results in an
overall shorter population of polymerized MTs (Hamel et al., 1981;
Kumar, 1981).

As stabilizing MAPs and chemo drugs for MTs have the effect of
promoting polymerization and stabilization, which is similar to how
we expect increases in the growth rate parameter 𝛼 and increases in
the pause transition number 𝑁𝑡𝑟 to act on MTs, we vary both these
parameters and see exactly what influence they have on MT dynamics.
7

Table 4
Table showing the amount of time tubulin in polymer form spends in a paused and a
growing state for an increase in the pause transition number 𝑁𝑡𝑟. All other parameters
fixed to the basecase parameter set in Table 3.

Percentage of time spent in growing and pausing states

𝑁𝑡𝑟 = 1.5 𝑁𝑡𝑟 = 3 𝑁𝑡𝑟 = 4.5 𝑁𝑡𝑟 = 6 𝑁𝑡𝑟 = 7.5

Pause 3.43 7.2224 11.0418 14.0816 16.2356

Grow 89.34 74.5274 40.2019 22.4126 9.0401

Table 5
Catastrophe frequency 𝑓𝑐 for varying growth rate parameter 𝛼 and transition number
𝑁𝑡𝑟.

Catastrophe frequency

𝑁𝑡𝑟 = 1.5 𝑁𝑡𝑟 = 3 𝑁𝑡𝑟 = 4.5 𝑁𝑡𝑟 = 6 𝑁𝑡𝑟 = 7.5

𝛼 = 2 1.1868 1.6596 0.8436 0.8917 1.0614
𝛼 = 2.5 1.6354 1.1348 0.7537 0.7927 0.9207
𝛼 = 3.0 1.0896 1.5987 0.6919 0.7253 0.8096
𝛼 = 3.5 1.0891 0.6461 0.6496 0.6710 0.7369

Later we include a discussion of the implicit action of such stabilizers
(MAPs and drugs) on MT dynamics.

In Table 4 we highlight the total time for which MTs spend in
growing and pausing states, for changes in the pause transition number
𝑁𝑡𝑟. In particular, increases in 𝑁𝑡𝑟 lead to an increase in the pausing
time, and a reduction in the amount of growing time, which is similar
to the action of MT stabilizing drugs and MAPs. These results are
further illustrated by looking at the corresponding curves for tubulin
concentration over time for increasing 𝑁𝑡𝑟 in Fig. 4.

In Fig. 4, we show that the growing tubulin population decreases
(red curve), while the pausing population increases (black curve), as
read from the top left to the bottom right figure pane. It is interesting
to note that for 𝑁𝑡𝑟 very large, there are few (almost zero) MTs in the
shortening state (blue curve), shown by the bottom two panes in the
figure. This likely has to do with the model construction (when pausing
transition frequency is increased, more MTs leave the growing state
to go to the paused state, leaving fewer MTs the opportunity to loss
their GTP cap and enter the shortening state). In addition, if we look
at the free GTP and GDP populations at the end of the simulation (at
15 min, green and cyan curves, respectively), the addition of these two
populations are very similar for low vs high 𝑁𝑡𝑟 (varying from ≈ 5 μM to
≈ 6.5 μM), which suggests that total tubulin in polymer form decreases
slightly.

Next we explore the catastrophe frequency given by Eq. (23) and
the percentage of time MTs spend in a paused state using Eq. (22) as
we vary the transition to pause number 𝑁 and the growth parameter
𝑡𝑟
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Fig. 4. Time evolution of tubulin concentration in growing 𝑢̄, shrinking 𝑣̄, pausing 𝑄̄, and free tubulin states 𝑝 and 𝑞 (units in μM) for the baseline parameters described in
Table 3 for variation in the transition to pause number 𝑁𝑡𝑟. Top left, 𝑁𝑡𝑟 = 1.5; Top right, 𝑁𝑡𝑟 = 3; bottom left, 𝑁𝑡𝑟 = 4.5; bottom right, 𝑁𝑡𝑟 = 6. The total tubulin in the growing
state decreases (red curve), and the total tubulin in the paused state increases (black curve), as we move from the top left to the bottom right pane in the figure. In addition the
total free tubulin (green and cyan curves) in the system increases slightly (from ≈ 5 = μ M to ≈ 6.5 μ M.).
Table 6
Pause duration (as a percent of simulation time) for varying growth rate parameter 𝛼
and transition number 𝑁𝑡𝑟.

Pause duration (% of Simulation time)

𝑁𝑡𝑟 = 1.5 𝑁𝑡𝑟 = 3 𝑁𝑡𝑟 = 4.5 𝑁𝑡𝑟 = 6 𝑁𝑡𝑟 = 7.5

𝛼 = 2 2.2227 4.647 7.258 9.6027 11.356
𝛼 = 2.5 3.43 7.2227 11.042 14.0813 16.2353
𝛼 = 3.0 4.664 9.783 14.54 18.108 20.5747
𝛼 = 3.5 5.8873 12.2027 17.6773 21.656 24.373

𝛼. From Table 5 we note that for a fixed pause transition number 𝑁𝑡𝑟,
increasing 𝛼 has the effect of decreasing the catastrophe frequency (see
first column in Table 5 highlighted in cyan, for example), and we note
that MTs remain in a state of pause longer as 𝛼 is increased (see the
first row in Table 6 highlighted in cyan). Both these features are again
qualitatively similar to the effects of certain classes of MAPs and MT
stabilizing drugs on MT dynamics.

In Fig. 5 we show the time evolution of the tubulin populations
for fixed 𝑁𝑡𝑟 = 1.5 and increasing 𝛼. Here we note the suppression of
MT dynamics (shown by flattening of the polymerized MT population
curves in red, black, and blue), where the paused MT population size
increases (black curves). This is consistent with the increase in pause
duration noted in Table 6. Here we note that, unlike changes in 𝑁𝑡𝑟, our
model predicts that less free tubulin is in the system as 𝛼 is increased,
where the free tubulin ranges from 7μM in the first figure pane (top
left) and is reduced to ≈ 4.5μM in the bottom right figure pane.
Unlike the previous case, there is an increase in polymerized tubulin
for increasing 𝑁𝑡𝑟, whereas there is a decrease in polymerized tubulin
for increasing 𝛼. This results could be suggestive that the growth rate
parameter is implicitly effected by stabilizing MAPs (Stanton et al.,
2011) (promoting MT growth and stabilization), while pause transition
number 𝑁𝑡𝑟 might be implicitly acted on by the stabilizing chemo
drugs since certain drugs like those from the taxan family act in a way
which usually results in an overall shorter population of polymerized
MTs (Hamel et al., 1981; Kumar, 1981).
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Table 7
Catastrophe frequency 𝑓𝑐 for varying shortening rate 𝛿 and transition number 𝑁𝑡𝑟.

Catastrophe frequency

𝑁𝑡𝑟 = 1.5 𝑁𝑡𝑟 = 3 𝑁𝑡𝑟 = 4.5 𝑁𝑡𝑟 = 6 𝑁𝑡𝑟 = 7.5

𝛿 = 15 1.1404 1.1019 0.7518 0.7908 0.9186
𝛿 = 20 1.6354 1.1348 0.7537 0.7927 0.9207
𝛿 = 25 1.2611 1.1485 0.7534 0.7935 0.9205
𝛿 = 30 1.1098 1.1624 0.7537 0.7929 0.9228

Table 8
Pause duration (as a percent of simulation time) for varying shortening rate 𝛿 and
transition number 𝑁𝑡𝑟.

Pause duration (% of Simulation time)

𝑁𝑡𝑟 = 1.5 𝑁𝑡𝑟 = 3 𝑁𝑡𝑟 = 4.5 𝑁𝑡𝑟 = 6 𝑁𝑡𝑟 = 7.5

𝛿 = 15 3.4075 7.2194 11.0392 14.0813 16.2356
𝛿 = 20 3.4300 7.2224 11.0418 14.0816 16.2356
𝛿 = 25 3.4428 7.2218 11.0424 14.0813 16.2354
𝛿 = 30 3.4511 7.2206 11.0425 14.0809 16.2351

3.2.2. Exploring MT destabilizing: varying the transition to pause number
𝑁𝑡𝑟, the MT shortening rate 𝛿, and the hydrolysis rate 𝛾ℎ

Examples of chemo drugs that act as MT destabilizers are those from
the vinca alkaloid family, which include vinblastine and vincristine,
and the drug colchicine (Mishra et al., 2005; Zhou and Giannakakou,
2005; Berges et al., 2014). At high concentrations, the vinca alkaloids
have affinity for free tubulin heterodimers, which potentially form
altered/curved tubulin dimers which cannot be added to a growing
MT. Also, at high concentrations, colchicine promotes MT depolymer-
ization, possibly through increases in the hydrolysis rate (Mishra et al.,
2005; Zhou and Giannakakou, 2005; Berges et al., 2014).

As destabilizing chemo drugs for MTs have the effect of depoly-
merization, we expect that increases in the MT shortening rate 𝛿
and the MT hydrolysis rate 𝛾ℎ might influence MTs dynamics in a
similar way as these destabilizing drugs. Hence, we might gain in-
sight into the potential implicit actions that these drugs have on such
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Fig. 5. Time evolution of tubulin concentration in growing 𝑢̄, shrinking 𝑣̄, pausing 𝑄̄, and free tubulin states 𝑝 and 𝑞 (units in μM) for the baseline parameters described in Table 3
for variation in the growth rate parameter 𝛼. Top left, 𝛼 = 2, top right, 𝛼 = 2.5, bottom left, 𝛼 = 3 and bottom right, 𝛼 = 3.5. Shown here are the total amounts of tubulin in
each state (growing 𝑢̄, shrinking 𝑣̄, pausing 𝑄̄, along with free tubulin populations (units in μM). The number of pause transitions 𝑁𝑡𝑟 = 1.5 is held constant. As 𝛼 increases, MT
dynamics are dampened as we see a decrease in oscillations in the state curves.
Table 9
Catastrophe frequency 𝑓𝑐 for varying hydrolysis rate 𝛾ℎ and transition number 𝑁𝑡𝑟.

Catastrophe frequency

𝑁𝑡𝑟 = 1.5 𝑁𝑡𝑟 = 3 𝑁𝑡𝑟 = 4.5 𝑁𝑡𝑟 = 6 𝑁𝑡𝑟 = 7.5

𝛾ℎ = 4 0.7863 0.4824 0.4926 0.5397 0
𝛾ℎ = 6 1.6354 1.1348 0.7537 0.7927 0.9207
𝛾ℎ = 8 1.7839 1.8389 2.0398 1.0678 1.1349
𝛾ℎ = 10 1.6516 1.9905 2.7544 2.3057 1.395

Table 10
Pause duration (as a percent of simulation time) for varying hydrolysis rate 𝛾ℎ and
transition number 𝑁𝑡𝑟.

Pause duration (% of Simulation time)

𝑁𝑡𝑟 = 1.5 𝑁𝑡𝑟 = 3 𝑁𝑡𝑟 = 4.5 𝑁𝑡𝑟 = 6 𝑁𝑡𝑟 = 7.5

𝛾ℎ = 4 13.5938 25.4627 33.9754 39.4988 43.0941
𝛾ℎ = 6 3.4300 7.2224 11.0418 14.0816 16.2356
𝛾ℎ = 8 1.0693 2.2597 3.5314 5.0146 6.3096
𝛾ℎ = 10 0.3799 0.7973 1.2296 1.6753 2.2981

parameters. As before, we explore MT dynamics by determining the
catastrophe frequency and the total pause duration as each of the above
aforementioned parameters are increased in turn.

In Table 7, for fixed pause transition number 𝑁𝑡𝑟 = 1.5 and varying
shortening rate 𝛿 (see column highlighted in yellow in Table 7) there
is little to no change in the catastrophe frequency. Similarly, for fixed
𝑁𝑡𝑟 = 1.5 and varying 𝛿 (see highlighted column again in Table 8), MTs
remain in the paused state for the same duration. In general, as the
pause transition number is increased, this trend is remains the same,
with catastrophe frequencies and pause duration remaining fixed in
each column.

As stated previously, MT destabilizing drugs work to increase MT
catastrophe frequency and promote depolymerization (Stanton et al.,
2011). We had assumed that an increase in the depolymerization pa-
rameter would increase MT depolymerization, but this was not the case.
We leave a few thoughts about why this might be in the Discussion and
Conclusion Section.
9

Finally we explore the catastrophe frequency and the total pause
duration as we vary the transition number 𝑁𝑡𝑟 and the hydrolysis rate
𝛾ℎ. We note that for fixed values of 𝑁𝑡𝑟 (e.g., 𝑁𝑡𝑟 = 1.5) (see column
highlighted in pink in Table 9) that the catastrophe frequency increases
as we increase the hydrolysis rate, a result that has been theorized and
tested by Gardner et al. (2011). In addition, we note that for a fixed
value of 𝑁𝑡𝑟 = 1.5 (see column highlighted in pink in Table 10) that
the pause duration also decreases with increasing hydrolysis. Both of
these results are consistent with those illustrated in Fig. 6. In particular,
we note increased oscillations in the tubulin concentration curves as
hydrolysis increases, which illustrates an increase in MT dynamical
instability, and hence an increase in the catastrophe frequency. Finally,
we also note an increase in the free-GTP tubulin population, and a
corresponding decrease in the polymerized tubulin populations as hy-
drolysis is increased, illustrating MT depolymerization. As stated above,
an increase in catastrophe frequency and MT depolymerization are
both characteristics of MT destabilizing drugs (like the vinca alkaloids),
and hence an effect of these destabilizing drugs could be an implicit
action that triggers an increase in the MT hydrolysis rate, perhaps for
increasing drug concentrations.

4. Conclusions and discussion

In this work, we developed a new mathematical model, based on
an extensions of the work by White et al. (2017) and Hinow et al.
(2009), to describe MT dynamic instability which takes into account
not only growth and shortening, but also MT pause, a state that to
our knowledge has not been studied from a theoretical framework
before. New work by Shant et al. has shown, through high resolution
microscopy, that the classical two-state model of growth and shortening
does not adequately describe the more robust dynamics of MTs, in
particular the existence of a paused state (Mahserejian et al., 2022).

To incorporate pause, a new model parameter 𝐶 that describes a
transition frequency into the paused state is included in the model.
More specifically, 𝐶 describes the total number of transitions that MTs
make into the paused state from the growing state over the time course
of the simulation. Although transition of MTs into paused states from
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Fig. 6. Time evolution of tubulin in polymerized and free tubulin for variation in the hydrolysis rate 𝛾ℎ holding 𝑁𝑡𝑟 at 1.5. From the top left to the bottom right, we have
𝛾ℎ = 4, 6, 8, 10 μm min−1. As the hydrolysis rate 𝛾ℎ increases, we see an increase in the number of oscillations. This is indicative of an increase in the catastrophe frequency.
Depolymerization is illustrated by the increase of free-GTP and free-GDP tubulin populations (and subsequent decreases in polymerized tubulin in both the growth and paused
states).
Fig. 7. Representation of the state space for MTs with boundaries 𝛤1 and 𝛤2. 𝛤1 represents the rescue boundary, where MTs without GTP caps are rescued, with the outer normal

vector
(

0
−1

)

. 𝛤2 represents the nucleation boundary and MTs cannot grow past this boundary. This has the outer normal vector
(

−1
1

)

.

shortening states has also been observed (Mahserejian et al., 2022), we
leave this to a future work.

In addition to our new modeling framework, we have derived a
mathematical expression for time-based MT catastrophe frequency in
the presence of pause. In our modeling framework, the MT shortening
rate, the growth parameter, and the MT rescue frequency are all model
inputs, and so we explore the dynamics of our system by (1) calculation
of the catastrophe frequency and (2) calculation of the duration of time
MTs spend in a paused state. We used these calculations to understand
how increases in certain model parameters associated with MT stabi-
lization (like the MT growth rate parameter 𝛼), and MT destabilization
10
(like the MT shortening rate 𝛿 and the hydrolysis rate 𝛾ℎ) alter MT
dynamics in terms of changes to the catastrophe frequency and pause
duration. Here, we assume that increases in the new pause transition
number 𝑁𝑡𝑟 will have stabilizing properties (recall 𝑁𝑡𝑟 = 𝐶×𝑇𝑠𝑖𝑚 where
𝑇𝑠𝑖𝑚 is the total simulation time).

By increasing parameters we thought to have stabilizing and desta-
bilizing properties, we gained qualitative information into how the
addition of various stabilizing MAPs, and stabilizing and destabiliz-
ing chemotherapeutic drugs (that target MTs) might act (directly or
indirectly) on such parameters to alter their dynamics in their pres-
ence. In particular, increases in the growth rate parameter 𝛼 and the
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pause transition number 𝑁𝑡𝑟 had a stabilizing affect (representative of
oth stabilizing MAPs and stabilizing drugs) of decreasing catastrophe
requency and increasing pause duration. However, each parameter
ad distinct effects on polymerization; increases in 𝑁𝑡𝑟 led to smaller
oncentrations of tubulin in polymer form, whereas increases in 𝛼 led

to roughly similar sized polymer tubulin concentrations, results that
compare to stabilizing drugs (like taxans), and stabilizing MAPs (like
+TIPs), respectively.

We also explored the effects of increases in the shortening rate 𝛿
and the hydrolysis rate 𝛾ℎ on MT dynamics. We noticed no change
in our dynamic parameters when varying the shortening rate 𝛿. In
particular, for fixed pause transition number 𝑁𝑡𝑟, there is no change
in the catastrophe frequency or the pause duration for increasing 𝛿.
However, we did find that increases in the hydrolysis rate 𝛾ℎ corre-
spond to increases in the catastrophe frequency and decreases in the
pause duration, in addition to increases in both free-GTP and free-GDP
tubulin populations (indicative of increased depolymerization). Such
results are comparable to destabilizing MT targeting drugs like those
of the vinca alkaloid family and colchicine, which have the property
that they depolymerize MTs at moderate to high concentrations and
work to increase the catastrophe frequency.

Overall, we have extended on classical two state models of MT
dynamics that include only growth and shortening by also considering
MT pausing. Such considerations are important as pausing has been
observed in MT systems, and even with this single theoretical approach
we have observed that MTs dynamics are altered with its addition
(recall the increase of MT catastrophe from near zero in Fig. 3 (again
this was for a single set of model parameters but this qualitative feature
was robust to parameter variations).

In the future, it would be interesting to incorporate other pausing
transitions, in addition to the pausing from growth and then shortening
transition that we studied here. In particular, it would be interesting to
study the other transitions that have been observed (Mahserejian et al.,
2022), which include pausing from growing states back to growing
states, pausing from shortening states back to shortening states, and
pausing from shortening states back to growing states.
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Appendix. Conversion of PDE to ODE (tubulin conservation)

The given system of equations [(2), (3), (4), (11), and (12)] con-
serves the total amount of tubulin in the MT system (i.e., all tubulin in
growing, shortening, pausing, and free-tubulin states is conserved). We
show this conservation here.

Let us consider the state space 𝛴 =
{

(𝑥, 𝑧) ∈ R2 ∶ 𝑥 ≥ 𝑧 ≥ 0
}

with
boundaries 𝛤1 = {(𝑥, 𝑧) ∈ 𝛴 ∶ 𝑧 = 0} and 𝛤2 = {(𝑥, 𝑧) ∈ 𝛴 ∶ 𝑥 = 𝑧} as
shown in Fig. 7.

Also, let 𝐁 =
(

𝛾𝑝𝑜𝑙𝑦𝑢
𝑅(𝑡)𝑢

)

where 𝑅(𝑡) = 𝛾𝑝𝑜𝑙𝑦(𝑝(𝑡))− 𝛾ℎ. Then Eq. (2) can

be written as
𝜕𝑢 + ∇ ⋅ 𝐁 = −𝑐𝑢 (26)
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𝜕𝑡
where ∇ = (𝜕∕𝜕𝑥, 𝜕∕𝜕𝑧). We now multiply Eq. (26) by 𝑥 and integrate
ver the state space. We do this by using the divergence theorem for

eighted integrals. We consider the outer normal 𝐧 which will be
(

0
−1

)

on 𝛤1 and
(

−1
1

)

on 𝛤2 so that the integration gives

∫𝛴
𝑥𝜕𝑢
𝜕𝑡

𝑑𝑧𝑑𝑥 = −∫𝛴
∇ ⋅ 𝐁𝑥𝑑𝑧𝑑𝑥 − 𝑐𝑢

= ∫𝛤1
𝑅(𝑡)𝑢(𝑥, 0, 𝑡)𝑥𝑑𝑥

+ ∫𝛤2

[

𝛾𝑝𝑜𝑙𝑦 − 𝛾𝑝𝑜𝑙𝑦 + 𝛾ℎ
]

𝑢(𝑥, 𝑥, 𝑡)𝑥𝑑𝑧𝑑𝑥

+ ∫

∞

0 ∫

𝑥

0
𝛾𝑝𝑜𝑙𝑦𝑢(𝑥, 𝑧, 𝑡)𝑑𝑧𝑑𝑥 − 𝑐𝑢.

This implies, after interchanging the order of differentiation and
integration, that

𝑑𝑢
𝑑𝑡

=

{

∫ ∞
0 𝜆𝑣(𝑥, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) ≥ 0
𝑅(𝑡) ∫ ∞

0 𝑢(𝑥, 0, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) < 0

+ ∫

∞

0

𝜇
𝐿∗ 𝑝

2(𝑡)𝜉(𝑥)𝑥𝑑𝑥 + ∫

∞

0 ∫

𝑥

0
𝛾𝑝𝑜𝑙𝑦𝑢(𝑥, 𝑧, 𝑡)𝑑𝑧𝑑𝑥 − 𝑐𝑢.

where 𝐿∗ is as defined in Eq. (7). Putting Eq. (7) into the second term
on the right and side gives

𝑑𝑢
𝑑𝑡

=

{

∫ ∞
0 𝜆𝑣(𝑥, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) ≥ 0
𝑅(𝑡) ∫ ∞

0 𝑢(𝑥, 0, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) < 0
+ 𝜇𝑝2(𝑡)

+ ∫

∞

0 ∫

𝑥

0
𝛾𝑝𝑜𝑙𝑦𝑢(𝑥, 𝑧, 𝑡)𝑑𝑧𝑑𝑥 − 𝑐𝑢.

Similarly, we multiply Eq. (3) by 𝑥 and integrate over 𝑥 to give

𝑑𝑣
𝑑𝑡

− 𝛿 ∫

∞

0
𝑥 𝜕𝑣
𝜕𝑥

𝑑𝑥 = −

{

𝜆 ∫ ∞
0 𝑣(𝑥, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) ≥ 0

𝑅(𝑡) ∫ ∞
0 𝑢(𝑥, 0, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) < 0.

We integrate the second term on the left side of the equation above
by parts to obtain

𝑑𝑣
𝑑𝑡

= −

{

𝜆 ∫ ∞
0 𝑣(𝑥, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) ≥ 0

𝑅(𝑡) ∫ ∞
0 𝑢(𝑥, 0, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) < 0

− 𝛿 ∫

∞

0
𝑣(𝑥, 𝑡)𝑑𝑥.

Now, multiply Eq. (4) by 𝑥 and integrate over the state space. This
ives

𝑑𝑄
𝑑𝑡

= 𝛾ℎ ∫

∞

0 ∫

𝑥

0

𝜕𝑄(𝑥, 𝑧, 𝑡)
𝜕𝑧

𝑥𝑑𝑧𝑑𝑥 + 𝑐𝑢

= 𝛾ℎ ∫

∞

0
[𝑄(𝑥, 𝑥, 𝑡) −𝑄(𝑥, 0, 𝑡)]𝑑𝑥 + 𝑐𝑢

= −𝛾ℎ ∫

∞

0
𝑥𝑄(𝑥, 0, 𝑡)𝑑𝑥 + 𝑐𝑢

So the complete ODE system is given as

𝑑𝑢
𝑑𝑡

=

{

𝜆 ∫ ∞
0 𝑣(𝑥, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) ≥ 0

𝑅(𝑡) ∫ ∞
0 𝑢(𝑥, 0, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) < 0

+ 𝜇𝑝2(𝑡)

+ 𝛾𝑝𝑜𝑙𝑦 ∫

∞

0 ∫

𝑥

0
𝑢(𝑥, 𝑧, 𝑡)𝑑𝑧𝑑𝑥 − 𝑐𝑢

𝑑𝑣
𝑑𝑡

= −

{

𝜆 ∫ ∞
0 𝑣(𝑥, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) ≥ 0

𝑅(𝑡) ∫ ∞
0 𝑢(𝑥, 0, 𝑡)𝑥𝑑𝑥 if 𝑅(𝑡) < 0

− 𝛿 ∫

∞

0
𝑣(𝑥, 𝑡)𝑑𝑥

𝑑𝑄
𝑑𝑡

= −𝛾ℎ ∫

∞

0
𝑄(𝑥, 0, 𝑡)𝑥𝑑𝑥 + 𝑐𝑢

𝑑𝑝
𝑑𝑡

= −𝛾𝑝𝑜𝑙𝑦(𝑝)∫

∞

0 ∫

𝑥

0
𝑢(𝑥, 𝑧, 𝑡)𝑑𝑧𝑑𝑥 − 𝜇𝑝𝑛 + 𝜅𝑞

𝑑𝑞
𝑑𝑡

= 𝛿 ∫

∞

0
𝑣(𝑥, 𝑡)𝑑𝑥 − 𝜅𝑞 + 𝛾ℎ ∫

∞

0
𝑄(𝑥, 0, 𝑡)𝑥𝑑𝑥

dding these equations together gives
𝑑 [

𝑣(𝑡) + 𝑢(𝑡) + 𝑞(𝑡) + 𝑝(𝑡) +𝑄(𝑡)
]

= 0,

𝑑𝑡
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showing that the total concentration of tubulin in conserved.
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